Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 13(4): 1215-1224, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38467016

RESUMO

Glycosylation of biomolecules can greatly alter their physicochemical properties, cellular recognition, subcellular localization, and immunogenicity. Glycosylation reactions rely on the stepwise addition of sugars using nucleotide diphosphate (NDP)-sugars. Making these substrates readily available will greatly accelerate the characterization of new glycosylation reactions, elucidation of their underlying regulation mechanisms, and production of glycosylated molecules. In this work, we engineered Saccharomyces cerevisiae to heterologously express nucleotide sugar synthases to access a wide variety of uridine diphosphate (UDP)-sugars from simple starting materials (i.e., glucose and galactose). Specifically, activated glucose, uridine diphosphate d-glucose (UDP-d-Glc), can be converted to UDP-d-glucuronic acid (UDP-d-GlcA), UDP-d-xylose (UDP-d-Xyl), UDP-d-apiose (UDP-d-Api), UDP-d-fucose (UDP-d-Fuc), UDP-l-rhamnose (UDP-l-Rha), UDP-l-arabinopyranose (UDP-l-Arap), and UDP-l-arabinofuranose (UDP-l-Araf) using the corresponding nucleotide sugar synthases of plant and microbial origins. We also expressed genes encoding the salvage pathway to directly activate free sugars to achieve the biosynthesis of UDP-l-Arap and UDP-l-Araf. We observed strong inhibition of UDP-d-Glc 6-dehydrogenase (UGD) by the downstream product UDP-d-Xyl, which we circumvented using an induction system (Tet-On) to delay the production of UDP-d-Xyl to maintain the upstream UDP-sugar pool. Finally, we performed a time-course study using strains containing the biosynthetic pathways to produce five non-native UDP-sugars to elucidate their time-dependent interconversion and the role of UDP-d-Xyl in regulating UDP-sugar metabolism. These engineered yeast strains are a robust platform to (i) functionally characterize sugar synthases in vivo, (ii) biosynthesize a diverse selection of UDP-sugars, (iii) examine the regulation of intracellular UDP-sugar interconversions, and (iv) produce glycosylated secondary metabolites and proteins.


Assuntos
Nucleotídeos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Açúcares , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo , Xilose
2.
Int J Biol Macromol ; 261(Pt 2): 129838, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307428

RESUMO

A novel α-amylase Amy03713 was screened and cloned from the starch utilization strain Vibrio alginolyticus LHF01. When heterologously expressed in Escherichia coli, Amy03713 exhibited the highest enzyme activity at 45 °C and pH 7, maintained >50 % of the enzyme activity in the range of 25-75 °C and pH 5-9, and sustained >80 % of the enzyme activity in 25 % (w/v) of NaCl solution, thus showing a wide range of adapted temperatures, pH, and salt concentrations. Halomonas bluephagenesis harboring amy03713 gene was able to directly utilize starch. With optimized amylase expression, H. bluephagenesis could produce poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB). When cultured for PHB production, recombinant H. bluephagenesis was able to grow up to a cell dry weight of 11.26 g/L, achieving a PHB titer of 6.32 g/L, which is the highest titer that has been reported for PHB production from starch in shake flasks. This study suggests that Amy03713 is an ideal amylase for PHA production using starch as the carbon source in H. bluephagenesis.


Assuntos
Halomonas , Ácidos Pentanoicos , Poli-Hidroxialcanoatos , Halomonas/genética , Halomonas/metabolismo , Carbono/metabolismo , Amido/metabolismo , Hidroxibutiratos/metabolismo , alfa-Amilases/genética , alfa-Amilases/metabolismo , Poliésteres/metabolismo
3.
Nat Chem Biol ; 20(4): 493-502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278997

RESUMO

QS-21 is a potent vaccine adjuvant currently sourced by extraction from the Chilean soapbark tree. It is a key component of human vaccines for shingles, malaria, coronavirus disease 2019 and others under development. The structure of QS-21 consists of a glycosylated triterpene scaffold coupled to a complex glycosylated 18-carbon acyl chain that is critical for immunostimulant activity. We previously identified the early pathway steps needed to make the triterpene glycoside scaffold; however, the biosynthetic route to the acyl chain, which is needed for stimulation of T cell proliferation, was unknown. Here, we report the biogenic origin of the acyl chain, characterize the series of enzymes required for its synthesis and addition and reconstitute the entire 20-step pathway in tobacco, thereby demonstrating the production of QS-21 in a heterologous expression system. This advance opens up unprecedented opportunities for bioengineering of vaccine adjuvants, investigating structure-activity relationships and understanding the mechanisms by which these compounds promote the human immune response.


Assuntos
Saponinas , Triterpenos , Humanos , Adjuvantes de Vacinas , Saponinas/farmacologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química
4.
Metab Eng ; 81: 110-122, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056688

RESUMO

Monoterpenes are commonly known for their role in the flavors and fragrances industry and are also gaining attention for other uses like insect repellant and as potential renewable fuels for aviation. Corynebacterium glutamicum, a Generally Recognized as Safe microbe, has been a choice organism in industry for the annual million ton-scale bioproduction of amino acids for more than 50 years; however, efforts to produce monoterpenes in C. glutamicum have remained relatively limited. In this study, we report a further expansion of the C. glutamicum biosynthetic repertoire through the development and optimization of a mevalonate-based monoterpene platform. In the course of our plasmid design iterations, we increased flux through the mevalonate-based bypass pathway, measuring isoprenol production as a proxy for monoterpene precursor abundance and demonstrating the highest reported titers in C. glutamicum to date at 1504.6 mg/L. Our designs also evaluated the effects of backbone, promoter, and GPP synthase homolog origin on monoterpene product titers. Monoterpene production was further improved by disrupting competing pathways for isoprenoid precursor supply and by implementing a biphasic production system to prevent volatilization. With this platform, we achieved 321.1 mg/L of geranoids, 723.6 mg/L of 1,8-cineole, and 227.8 mg/L of linalool. Furthermore, we determined that C. glutamicum first oxidizes geraniol through an aldehyde intermediate before it is asymmetrically reduced to citronellol. Additionally, we demonstrate that the aldehyde reductase, AdhC, possesses additional substrate promiscuity for acyclic monoterpene aldehydes.


Assuntos
Corynebacterium glutamicum , Monoterpenos , Monoterpenos/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácido Mevalônico/metabolismo , Terpenos/metabolismo , Engenharia Metabólica
5.
Nat Commun ; 14(1): 7101, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925486

RESUMO

Methyl jasmonate (MeJA) is a known elicitor of plant specialized metabolism, including triterpenoid saponins. Saponaria vaccaria is an annual herb used in traditional Chinese medicine, containing large quantities of oleanane-type triterpenoid saponins with anticancer properties and structural similarities to the vaccine adjuvant QS-21. Leveraging the MeJA-elicited saponin biosynthesis, we identify multiple enzymes catalyzing the oxidation and glycosylation of triterpenoids in S. vaccaria. This exploration is aided by Pacbio full-length transcriptome sequencing and gene expression analysis. A cellulose synthase-like enzyme can not only glucuronidate triterpenoid aglycones but also alter the product profile of a cytochrome P450 monooxygenase via preference for the aldehyde intermediate. Furthermore, the discovery of a UDP-glucose 4,6-dehydratase and a UDP-4-keto-6-deoxy-glucose reductase reveals the biosynthetic pathway for the rare nucleotide sugar UDP-D-fucose, a likely sugar donor for fucosylation of plant natural products. Our work enables the production and optimization of high-value saponins in microorganisms and plants through synthetic biology approaches.


Assuntos
Saponaria , Saponinas , Triterpenos , Vaccaria , Triterpenos/metabolismo , Transcriptoma , Saponaria/genética , Saponaria/metabolismo , Vaccaria/genética , Plantas/metabolismo , Difosfato de Uridina , Glucose , Açúcares
6.
Environ Sci Pollut Res Int ; 30(50): 108917-108927, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37755597

RESUMO

To remediate historically polluted sites before their land-use changes, it is essential to understand the concentration distribution, geochemical fraction, and migratory behavior of As in soil with varied particle sizes for the use of a sieving procedure. This study investigated the amount and percentage of As in soil with different particle sizes (0.25, 0.25-1, and 1-2 mm) as well as its toxicity characteristic in leaching procedure at four previously contaminated sites in the Beijiang River Basin, South China. The results showed that the total As concentration in the collected soils ranged from 70.1 to 402.8 mg/kg, and only a few percent of soil particle samples had As contents below the local risk threshold value of 60 mg/kg. The amorphous hydrous oxide bound, crystalline hydrous oxide bound, and residual fractions (F3-F5) of the geochemical fraction of As in soil of polluted sites accounted for 82.2-95.7% of the total As distribution. However, the concentration of As in non-specifically bound fractions increased with the mass ratio of soil with coarse particle sizes due to the negative correlation of Fe-bearing minerals concentration with the mass ratio of soil with coarse particle size. According to redundancy analysis, soil with coarse particle sizes and non-specifically bound As were mostly responsible for the As concentration in the leachate. These findings confirmed that a sieving process was not suitable for the remediation of soil As at four historically contaminated sites in the Beijiang River Basin due to the high concentration of As in soil and non-negligible environmental risk of labile extractable As in soil with coarse particle size.


Assuntos
Arsênio , Poluentes do Solo , Arsênio/análise , Rios , Poluição Ambiental/análise , Solo/química , Óxidos/análise , China , Poluentes do Solo/análise
7.
Nat Metab ; 5(7): 1127-1140, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37443355

RESUMO

Corynebacterium glutamicum is a promising host for production of valuable polyketides. Propionate addition, a strategy known to increase polyketide production by increasing intracellular methylmalonyl-CoA availability, causes growth inhibition in C. glutamicum. The mechanism of this inhibition was unclear before our work. Here we provide evidence that accumulation of propionyl-CoA and methylmalonyl-CoA induces growth inhibition in C. glutamicum. We then show that growth inhibition can be relieved by introducing methylmalonyl-CoA-dependent polyketide synthases. With germicidin as an example, we used adaptive laboratory evolution to leverage the fitness advantage of polyketide production in the presence of propionate to evolve improved germicidin production. Whole-genome sequencing revealed mutations in germicidin synthase, which improved germicidin titer, as well as mutations in citrate synthase, which effectively evolved the native glyoxylate pathway to a new methylcitrate pathway. Together, our results show that C. glutamicum is a capable host for polyketide production and we can take advantage of propionate growth inhibition to drive titers higher using laboratory evolution or to screen for production of polyketides.


Assuntos
Policetídeos , Propionatos/metabolismo
8.
Biotechnol Biofuels Bioprod ; 16(1): 60, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016410

RESUMO

BACKGROUND: Advanced spark ignition engines require high performance fuels with improved resistance to autoignition. Biologically derived olefinic alcohols have arisen as promising blendstock candidates due to favorable octane numbers and synergistic blending characteristics. However, production and downstream separation of these alcohols are limited by their intrinsic toxicity and high aqueous solubility, respectively. Bioproduction of carboxylate esters of alcohols can improve partitioning and reduce toxicity, but in practice has been limited to saturated esters with characteristically low octane sensitivity. If olefinic esters retain the synergistic blending characteristics of their alcohol counterparts, they could improve the bioblendstock combustion performance while also retaining the production advantages of the ester moiety. RESULTS: Optimization of Escherichia coli isoprenoid pathways has led to high titers of isoprenol and prenol, which are not only excellent standalone biofuel and blend candidates, but also novel targets for esterification. Here, a selection of olefinic esters enhanced blendstock performance according to their degree of unsaturation and branching. E. coli strains harboring optimized mevalonate pathways, thioester pathways, and heterologous alcohol acyltransferases (ATF1, ATF2, and SAAT) were engineered for the bioproduction of four novel olefinic esters. Although prenyl and isoprenyl lactate titers were limited to 1.48 ± 0.41 mg/L and 5.57 ± 1.36 mg/L, strains engineered for prenyl and isoprenyl acetate attained titers of 176.3 ± 16.0 mg/L and 3.08 ± 0.27 g/L, respectively. Furthermore, prenyl acetate (20% bRON = 125.8) and isoprenyl acetate (20% bRON = 108.4) exhibited blend properties comparable to ethanol and significantly better than any saturated ester. By further scaling cultures to a 2-L bioreactor under fed-batch conditions, 15.0 ± 0.9 g/L isoprenyl acetate was achieved on minimal medium. Metabolic engineering of acetate pathway flux further improved titer to attain an unprecedented 28.0 ± 1.0 g/L isoprenyl acetate, accounting for 75.7% theoretical yield from glucose. CONCLUSION: Our study demonstrated novel bioproduction of four isoprenoid oxygenates for fuel blending. Our optimized E. coli production strain generated an unprecedented titer of isoprenyl acetate and when paired with its favorable blend properties, may enable rapid scale-up of olefinic alcohol esters for use as a fuel blend additive or as a precursor for longer-chain biofuels and biochemicals.

9.
J Am Chem Soc ; 145(16): 8822-8832, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057992

RESUMO

Modular polyketide synthases (PKSs) are polymerases that employ α-carboxyacyl-CoAs as extender substrates. This enzyme family contains several catalytic modules, where each module is responsible for a single round of polyketide chain extension. Although PKS modules typically use malonyl-CoA or methylmalonyl-CoA for chain elongation, many other malonyl-CoA analogues are used to diversify polyketide structures in nature. Previously, we developed a method to alter an extension substrate of a given module by exchanging an acyltransferase (AT) domain while maintaining protein folding. Here, we report in vitro polyketide biosynthesis by 13 PKSs (the wild-type PKS and 12 AT-exchanged PKSs with unusual ATs) and 14 extender substrates. Our ∼200 in vitro reactions resulted in 13 structurally different polyketides, including several polyketides that have not been reported. In some cases, AT-exchanged PKSs produced target polyketides by >100-fold compared to the wild-type PKS. These data also indicate that most unusual AT domains do not incorporate malonyl-CoA and methylmalonyl-CoA but incorporate various rare extender substrates that are equal to in size or slightly larger than natural substrates. We developed a computational workflow to predict the approximate AT substrate range based on active site volumes to support the selection of ATs. These results greatly enhance our understanding of rare AT domains and demonstrate the benefit of using the proposed PKS engineering strategy to produce novel chemicals in vitro.


Assuntos
Policetídeo Sintases , Policetídeos , Policetídeo Sintases/metabolismo , Aciltransferases/química , Domínio Catalítico , Policetídeos/metabolismo , Especificidade por Substrato
10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6416-6419, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892580

RESUMO

Recently, cross-subject emotion recognition attracts widespread attention. The current emotional experiments mainly use video clips of different emotions as stimulus materials, but the videos watched by different subjects are the same, which may introduce the same noise pattern in the collected data. However, the traditional experiment settings for cross-subject emotion recognition models couldn't eliminate the impact of same video clips on recognition results, which may lead to a bias on classification. In this paper, we propose a novel experiment setting for cross-subject emotion recognition. We evaluate different experiment settings on four public emotion datasets, DEAP, SEED, SEED-IV and SEED-V. The experimental results demonstrate the deficiencies of the traditional experiment settings and the advantages of our proposed experiment setting.


Assuntos
Eletroencefalografia , Emoções , Humanos
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6449-6452, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892588

RESUMO

Many psychiatric disorders are accompanied with sleep abnormalities, having significant influence on emotions which might worsen the disorder conditions. Previous studies discovered that the emotion recognition task with objective physiological signals, such as electroencephalography (EEG) and eye movements, provides a reliable way to figure out the complicated relationship between emotion and sleep. However, both of the emotion and EEG signals are affected by sex. This study aims to investigate how sex differences influence emotion recognition under three different sleep conditions. We firstly developed a four-class emotion recognition task based on various sleep conditions to augment the existing dataset. Then we improved the current state-of-the-art deep-learning model with the attention mechanism. It outperforms the best model with higher accuracy about 91.3% and more stabilization. After that, we compared the results of the male and the female group given by this model. The classification accuracy of happy emotion obviously decreases under sleep deprivation for both males and females, which indicates that sleep deprivation impairs the stimulation of happy emotion. Sleep deprivation also notably weakens the discrimination ability of sad emotion for males while females maintain the same as under common sleep. Our study is instructively beneficial to the real application of emotion recognition in disorder diagnosis.


Assuntos
Caracteres Sexuais , Privação do Sono , Eletroencefalografia , Emoções , Tecnologia de Rastreamento Ocular , Feminino , Humanos , Masculino
12.
Cell ; 184(6): 1636-1647, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33639085

RESUMO

Rapid increases of energy consumption and human dependency on fossil fuels have led to the accumulation of greenhouse gases and consequently, climate change. As such, major efforts have been taken to develop, test, and adopt clean renewable fuel alternatives. Production of bioethanol and biodiesel from crops is well developed, while other feedstock resources and processes have also shown high potential to provide efficient and cost-effective alternatives, such as landfill and plastic waste conversion, algal photosynthesis, as well as electrochemical carbon fixation. In addition, the downstream microbial fermentation can be further engineered to not only increase the product yield but also expand the chemical space of biofuels through the rational design and fine-tuning of biosynthetic pathways toward the realization of "designer fuels" and diverse future applications.


Assuntos
Biocombustíveis/análise , Desenvolvimento Sustentável , Vias Biossintéticas , Ciclo do Carbono , Humanos , Lignina/metabolismo , Resíduos
13.
Talanta ; 224: 121831, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379049

RESUMO

In this paper, a novel strategy for biosensing butyrylcholinesterase (BChE) activity is developed based on manganese dioxide (MnO2) nanosheets to modulate the photoluminescence of thiamine (TH). The oxidase-like activity of MnO2 nanosheets enables them to catalyze the oxidation of non-fluorescent substrate TH to generate strong fluorescent thiochrome (TC). When the target BChE is introduced to form thiocholine in the presence of S-butyrylthiocholine iodide (BTCh), MnO2 nanosheets are reduced by thiocholine to Mn2+, resulting in the loss of their oxidase-like activity and the reduction of TC fluorescence. Based on this, a BChE activity fluorescence biosensor is constructed utilizing the luminescence behavior variation of TH and the oxidase-like activity of MnO2 nanosheets. The fluorescence biosensor shows a sensitive response to BChE, and the detection limit reaches 0.036 U L-1. In addition, the feasibility of the biosensor in real samples analysis is studied with satisfactory results.


Assuntos
Compostos de Manganês , Nanoestruturas , Butirilcolinesterase , Luminescência , Óxidos , Tiamina
14.
Nat Commun ; 11(1): 5385, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097726

RESUMO

High titer, rate, yield (TRY), and scalability are challenging metrics to achieve due to trade-offs between carbon use for growth and production. To achieve these metrics, we take the minimal cut set (MCS) approach that predicts metabolic reactions for elimination to couple metabolite production strongly with growth. We compute MCS solution-sets for a non-native product indigoidine, a sustainable pigment, in Pseudomonas putida KT2440, an emerging industrial microbe. From the 63 solution-sets, our omics guided process identifies one experimentally feasible solution requiring 14 simultaneous reaction interventions. We implement a total of 14 genes knockdowns using multiplex-CRISPRi. MCS-based solution shifts production from stationary to exponential phase. We achieve 25.6 g/L, 0.22 g/l/h, and ~50% maximum theoretical yield (0.33 g indigoidine/g glucose). These phenotypes are maintained from batch to fed-batch mode, and across scales (100-ml shake flasks, 250-ml ambr®, and 2-L bioreactors).


Assuntos
Piperidonas/metabolismo , Pseudomonas putida/metabolismo , Biologia Sintética/métodos , Técnicas de Cultura Celular por Lotes , Biomassa , Reatores Biológicos/microbiologia , Carbono/metabolismo , Meios de Cultura , Fermentação , Técnicas de Inativação de Genes , Engenharia Genética , Genoma Bacteriano , Glucose/metabolismo , Microbiologia Industrial , Pseudomonas putida/genética
15.
Appl Environ Microbiol ; 86(21)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32826213

RESUMO

With its ability to catabolize a wide variety of carbon sources and a growing engineering toolkit, Pseudomonas putida KT2440 is emerging as an important chassis organism for metabolic engineering. Despite advances in our understanding of the organism, many gaps remain in our knowledge of the genetic basis of its metabolic capabilities. The gaps are particularly noticeable in our understanding of both fatty acid and alcohol catabolism, where many paralogs putatively coding for similar enzymes coexist, making biochemical assignment via sequence homology difficult. To rapidly assign function to the enzymes responsible for these metabolisms, we leveraged random barcode transposon sequencing (RB-Tn-Seq). Global fitness analyses of transposon libraries grown on 13 fatty acids and 10 alcohols produced strong phenotypes for hundreds of genes. Fitness data from mutant pools grown on fatty acids of varying chain lengths indicated specific enzyme substrate preferences and enabled us to hypothesize that DUF1302/DUF1329 family proteins potentially function as esterases. From the data, we also postulate catabolic routes for the two biogasoline molecules isoprenol and isopentanol, which are catabolized via leucine metabolism after initial oxidation and activation with coenzyme A (CoA). Because fatty acids and alcohols may serve as both feedstocks and final products of metabolic-engineering efforts, the fitness data presented here will help guide future genomic modifications toward higher titers, rates, and yields.IMPORTANCE To engineer novel metabolic pathways into P. putida, a comprehensive understanding of the genetic basis of its versatile metabolism is essential. Here, we provide functional evidence for the putative roles of hundreds of genes involved in the fatty acid and alcohol metabolism of the bacterium. These data provide a framework facilitating precise genetic changes to prevent product degradation and to channel the flux of specific pathway intermediates as desired.


Assuntos
Álcoois/metabolismo , Elementos de DNA Transponíveis , DNA Bacteriano , Ácidos Graxos/metabolismo , Pseudomonas putida/metabolismo , Redes e Vias Metabólicas , Análise de Sequência de DNA
16.
Nat Commun ; 11(1): 2931, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523014

RESUMO

Despite intensive study, plant lysine catabolism beyond the 2-oxoadipate (2OA) intermediate remains unvalidated. Recently we described a missing step in the D-lysine catabolism of Pseudomonas putida in which 2OA is converted to D-2-hydroxyglutarate (2HG) via hydroxyglutarate synthase (HglS), a DUF1338 family protein. Here we solve the structure of HglS to 1.1 Å resolution in substrate-free form and in complex with 2OA. We propose a successive decarboxylation and intramolecular hydroxylation mechanism forming 2HG in a Fe(II)- and O2-dependent manner. Specificity is mediated by a single arginine, highly conserved across most DUF1338 proteins. An Arabidopsis thaliana HglS homolog coexpresses with known lysine catabolism enzymes, and mutants show phenotypes consistent with disrupted lysine catabolism. Structural and biochemical analysis of Oryza sativa homolog FLO7 reveals identical activity to HglS despite low sequence identity. Our results suggest DUF1338-containing enzymes catalyze the same biochemical reaction, exerting the same physiological function across bacteria and eukaryotes.


Assuntos
Ferro/metabolismo , Lisina/metabolismo , Oxigenases/metabolismo , Arabidopsis/metabolismo , Oryza/metabolismo , Pseudomonas putida/metabolismo
17.
J Neurophysiol ; 124(2): 352-359, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579410

RESUMO

Beta-band oscillations are a dominant feature in the sensorimotor system, which includes movement-related beta desynchronization (MRBD) during the preparation and execution phases of movement and postmovement beta synchronization (PMBS) on movement cessation. Many studies have linked this rhythm to motor functions. However, its associations to the movement speed are still unclear. We make a hypothesis that PMBS will be modulated with increasing of movement speeds. We assessed the MRBD and PMBS during isotonic slower self-paced and ballistic movements with 15 healthy subjects. Furthermore, we conduct an additional control experiment with the isometric contraction with two levels of forces to match those in the isotonic slower self-paced and ballistic movements separately. We found that the amplitude of PMBS but not MRBD in motor cortex is modulated by the speed during voluntary movement. PMBS was positively correlated with movement speed and acceleration through the partial correlation analysis. However, there were no changes in the PMBS and MRBD during the isometric contraction with two levels of forces. These results demonstrate a different function of PMBS and MRBD to the movement speed during voluntary activity and suggest that the movement speed would affect the amplitude of PMBS.NEW & NOTEWORTHY Beta-band oscillations are a dominant feature in the sensorimotor system that associate to the motor function. We found that the movement-related postmovement beta synchronization (PMBS) over the contralateral sensorimotor cortex was positively correlated with the speed of a voluntary movement, but the movement-related beta desynchronization (MRBD) was not. Our results show a differential response of the PMBS and MRBD to the movement speed during voluntary movement.


Assuntos
Ritmo beta/fisiologia , Sincronização Cortical/fisiologia , Atividade Motora/fisiologia , Músculo Esquelético/fisiologia , Córtex Sensório-Motor/fisiologia , Adulto , Feminino , Humanos , Masculino , Córtex Motor/fisiologia , Adulto Jovem
18.
J Am Chem Soc ; 142(22): 9896-9901, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32412752

RESUMO

Polyketide synthase (PKS) engineering is an attractive method to generate new molecules such as commodity, fine and specialty chemicals. A significant challenge is re-engineering a partially reductive PKS module to produce a saturated ß-carbon through a reductive loop (RL) exchange. In this work, we sought to establish that chemoinformatics, a field traditionally used in drug discovery, offers a viable strategy for RL exchanges. We first introduced a set of donor RLs of diverse genetic origin and chemical substrates  into the first extension module of the lipomycin PKS (LipPKS1). Product titers of these engineered unimodular PKSs correlated with chemical structure similarity between the substrate of the donor RLs and recipient LipPKS1, reaching a titer of 165 mg/L of short-chain fatty acids produced by the host Streptomyces albus J1074. Expanding this method to larger intermediates that require bimodular communication, we introduced RLs of divergent chemosimilarity into LipPKS2 and determined triketide lactone production. Collectively, we observed a statistically significant correlation between atom pair chemosimilarity and production, establishing a new chemoinformatic method that may aid in the engineering of PKSs to produce desired, unnatural products.


Assuntos
Biologia Computacional , Policetídeo Sintases/química , Engenharia de Proteínas , Estrutura Molecular , Policetídeo Sintases/metabolismo
19.
Biomed Pharmacother ; 127: 110164, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32422563

RESUMO

PURPOSE: We investigated DDX11-AS1 effects on bladder cancer (BLCA) progression to identify a new potential therapeutic target for BLCA. METHODS: BLCA cases (n = 108) were enrolled. SW780 and J82 cells were transfected. Cell counting kit-8 (CCK-8) assay, wound healing assay and transwell migration assay was conducted. Cell cycle and apoptosis was detected by flow cytometry. Luciferase reporter assay was performed. DDX11-AS1, miR-499b-5p and CDK6 mRNA expression in tissues/cells was determined by quantitative real-time polymerase chain reaction (qRT-PCR). In vivo experiment was performed using nude mice. CDK6 and Ki67 proteins expression in cells and xenograft tumors were researched by Western blot and immunohistochemistry. RESULTS: Overexpressed DDX11-AS1 in BLCA was associated with poor outcome of patients. Compared with siCtrl group, SW780 and J82 cells of siDDX11-AS1 group had lower OD450 value (P < 0.01), less cells in S phase, more apoptosis cells (P < 0.05), higher relative wound width (P < 0.05) and less invasive cell number (P < 0.01). DDX11-AS1 promoted CDK6 expression via inhibiting miR-499b-5p. Compared with oe-DDX11-AS1 group, SW780 cells of oe-DDX11-AS1 + miR-499b-5p mimic group and oe-DDX11-AS1 + siCDK6 group had lower OD450 value (P < 0.01), less cells in S phrase, more apoptosis cells (P < 0.01), higher relative wound width (P < 0.05) and less invasive cell numbers (P < 0.01). DDX11-AS1 knockdown inhibited SW780 cells growth in vivo and suppressed CDK6 and Ki67 expression in xenograft tumors. CONCLUSION: DDX11-AS1 exacerbates BLCA progression by enhancing CDK6 expression via suppressing miR-499b-5p.


Assuntos
Quinase 6 Dependente de Ciclina/genética , RNA Helicases DEAD-box/genética , DNA Helicases/genética , MicroRNAs/genética , Neoplasias da Bexiga Urinária/patologia , Idoso , Animais , Apoptose/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Bexiga Urinária/genética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Metab Eng Commun ; 10: e00119, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32280587

RESUMO

Pseudomonas putida is a saprophytic bacterium with robust metabolisms and strong solvent tolerance making it an attractive host for metabolic engineering and bioremediation. Due to its diverse carbon metabolisms, its genome encodes an array of proteins and enzymes that can be readily applied to produce valuable products. In this work we sought to identify design principles and bottlenecks in the production of type III polyketide synthase (T3PKS)-derived compounds in P. putida. T3PKS products are widely used as nutraceuticals and medicines and often require aromatic starter units, such as coumaroyl-CoA, which is also an intermediate in the native coumarate catabolic pathway of P. putida. Using a randomly barcoded transposon mutant (RB-TnSeq) library, we assayed gene functions for a large portion of aromatic catabolism, confirmed known pathways, and proposed new annotations for two aromatic transporters. The 1,3,6,8-tetrahydroxynapthalene synthase of Streptomyces coelicolor (RppA), a microbial T3PKS, was then used to rapidly assay growth conditions for increased T3PKS product accumulation. The feruloyl/coumaroyl CoA synthetase (Fcs) of P. putida was used to supply coumaroyl-CoA for the curcuminoid synthase (CUS) of Oryza sativa, a plant T3PKS. We identified that accumulation of coumaroyl-CoA in this pathway results in extended growth lag times in P. putida. Deletion of the second step in coumarate catabolism, the enoyl-CoA hydratase-lyase (Ech), resulted in increased production of the type III polyketide bisdemethoxycurcumin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...